what are plasmalogens?
Plasmalogens are critical membrane components involved with neurotransmitter release. They are found in high concentrations in the brain and heart. They are made mostly in the liver and there are no adequate food sources. Levels dramatically decrease after age 60. They are an important part of nerve cells and help cells communicate and function. Several scientific studies show plasmalogen levels are low in people with neurodegenerative diseases including dementia, Parkinson’s, and multiple sclerosis. Plasmalogen levels are also low in pancreatic cancer, diabetes, and heart and stroke. ​

Plasmalogens also have antioxidant properties – some plasmalogens contain oleic acid which is a mono-unsaturated fatty acid found in olive oil and some contain polyunsaturated fatty acids like docosahexaenoic acid (DHA) which is essential for health. DHA (an omega-3 found in fish oils) promotes cardiovascular health, is required for optimal brain function, is needed for cells to function, and is anti-inflammatory.
Plasmalogen Deficiency, Dementia, and Death

Breaking Alzheimer’s book

My new book, Breaking Alzheimer’s: A 15 Year Crusade to Expose the Cause and Deliver the Cure, tell the story of Plasmalogen Deficiency – The Discovery and The Solution.

Learn more about the book and the Breaking Alzheimer’s – Definitive Lecture Series.

Breaking Alzheimer's book cover_June 2021

Scientifically designed
plasmalogen supplements

After years of extensive research I designed plasmalogen supplements as a plasmalogen precursor that survives the gut and is then converted to the target plasmalogen molecule independent of peroxisomal function.

To learn more about my plasmalogen supplements, register for my free Educational Seminars here. The Supplements (Series C) seminars include:

  • Plasmalogen Precursor Design and Development (C101)
  • The Three Main Functions of Plasmalogens (C102)
  • Plasmalogen Supplementation Prevents Neurodegeneration (C103)
  • Plasmalogen Supplementation Prevents Demyelination (C104)

Dr. Goodenowe’s scientifically designed plasmalogen supplements are available through Prodrome Sciences. Visit the Prodrome.com store to learn more about the products.

more details...
Plasmalogens are a special type of phospholipid. They are found in high concentrations in the brain, heart, lungs, kidneys, and eyes. Plasmalogens are not some trace nutrient, they actually build a big part of the brain, as much as 20% of the dry weight.

Plasmalogen levels in the brain increase up to 30 to 40 years of age and then significantly decrease by around 70 years of age[iii]. There are no adequate food sources. The body makes plasmalogens in the peroxisomes of cells; the majority are made in the liver. The body’s ability to make plasmalogens becomes impaired as peroxisome function is compromised with age and plasmalogens are degraded from inflammation and oxidative stress.

[i] Han X. Lipid alterations in the earliest clinically recognizable stage of Alzheimer’s disease: implication of the role of lipids in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 2005 Jan;2(1):65-77. Review. PubMed PMID: 15977990.
[ii] Senanayake V, Goodenowe DB. Plasmalogen deficiency and neuropathology in Alzheimer’s disease: Causation or coincidence? Alzheimers Dement (N Y). 2019 Oct 4;5:524-532. doi: 10.1016/j.trci.2019.08.003. eCollection 2019.Review. PubMed: 31650009; PubMed Central PMCID: PMC6804645.
[iii] Rouser G, Yamamoto A. Curvilinear regression course of human brain lipid composition changes with age. Lipids. 1968 May;3(3):284-7. PubMed PMID: 17805871.
why are low levels of plasmalogens bad?

Data from the Rush University Memory and Aging Project showed that a 95-year-old with high plasmalogen levels had the same chance of dying in five years as a 65-year-old with low plasmalogen levels. A 95-year-old with high levels had an almost 70 percent chance of living to their 100th birthday whereas a person the same age with low plasmalogen levels had a less than 20 percent chance of living to their 100th birthday. These results were shocking.

Decades of data show that low plasmalogen levels have severe health effects and that plasmalogen supplementation has positive health effects.
Plasmalogens and Death

There is no question that plasmalogens are important for health. But what about having low levels of plasmalogens – just how bad can it be? I have made a lot of graphs in my career and only one graph has actually scared me: the relationship between blood plasmalogen levels and death.

Probability of dying in 5.3 years

Data from the Rush University Memory and Aging Project. Final dataset: 1262 participants, participants still living since last clinical visit = 896, participants deceased since last visit = 862. Average age at enrollment = 81. Low plasmalogens = 5th percentile +/- 95% CI. High plasmalogens = 95th percentile +/- 95% CI.

Plasmalogens and neurodegeneration

Plasmalogens are involved in several diseases. I have studied plasmalogens since 2006 when I first discovered and hypothesized about the role of plasmalogens in the cause of dementia[i]. Since then, research evidence has expanded to show that plasmalogens are part of the root cause of neurodegeneration that leads to Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis.

Most published data available is for plasmalogens and dementia. Plasmalogen deficiency is associated with cognitive impairment and Alzheimer’s disease[ii]. The severity of dementia correlates with the severity of plasmalogen deficiency, irrespective of APOE allele status which is the second biggest risk factor for Alzheimer’s disease after age 3.

People with dementia have low plasmalogen levels.
  • Levels are significantly lower in people with all stages of dementia.
  • The lower the plasmalogen levels, the more severe the disease.
  • Levels decrease years before any clinical symptoms.
Plasmalogens are a stronger risk factor for dementia than genetics. .
  • The presence of an APOE e4 allele is a genetic risk factor for dementia/Alzheimer’s disease. This genetic risk is modified by the plasmalogen level of that person.
  • E4 carriers with high plasmalogen levels do not have an increased risk for dementia.
[i] Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PW, Heath D, Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res. 2007 Nov;48(11):2485-98. Epub 2007 Jul 30. PubMed PMID: 17664527.
[ii] Goodenowe DB, Senanayake V. Relation of Serum Plasmalogens and APOE Genotype to Cognition and Dementia in Older Persons in a Cross-Sectional Study. Brain Sci. 2019 Apr 24;9(4). pii: E92. doi: 10.3390/brainsci9040092. PubMed PMID: 31022959; PubMed Central PMCID: PMC6523320.
why do we get low levels of plasmalogens?

The body makes a lot of plasmalogens and consumes a lot. Plasmalogen deficiency occurs when the body can no longer make as much as it consumes. This can happen due to increased oxidative stress which degrades plasmalogens[i] or decreased biosynthesis caused by aging and chronic exposure to xenobiotics[ii].

[i] Jenkins CM, Yang K, Liu G, Moon SH, Dilthey BG, Gross RW. Cytochrome c is an oxidative stress-activated plasmalogenase that cleaves plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl ether linkage. J Biol Chem. 2018 Jun1;293(22):8693-8709. doi: 10.1074/jbc.RA117.001629. Epub 2018 Mar 12. PubMed PMID: 29530984.
[ii] Terlecky SR, Koepke JI, Walton PA. Peroxisomes and aging. Biochim Biophys Acta. 2006 Dec;1763(12):1749-54. Epub 2006 Aug 23. Review. PubMed PMID: 17027095.
plasmalogens and the cause of diseases

What happens when there are not enough plasmalogens in the body? Plasmalogens have both structural and functional roles in the brain. Plasmalogen deficiency leads to cell membrane changes in structure, geometry, and function as the body is forced to substitute other molecules such as phosphatidylethanolamines in place of plasmalogens. This leads to cellular signaling abnormalities and neurotransmission deficits as well as lowered antioxidant defenses[i].

Inflammation can lead to a vicious cycle where oxidative stress degrades plasmalogens which further reduces the anti-inflammatory and antioxidative capacity of the tissues ultimately leading to clinical symptoms of disease[ii].

[i] Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012 Sep;1822(9):1442-52. doi: 10.1016/j.bbadis.2012.05.008. Epub 2012 May 22. Review. PubMed PMID: 22627108.
[ii] Su XQ, Wang J, Sinclair AJ. Plasmalogens and Alzheimer’s disease: a review. Lipids Health Dis. 2019 Apr 16;18(1):100. doi: 10.1186/s12944-019-1044-1. Review. PubMed PMID: 30992016.

alzheimer's disease

Alzheimer’s disease results from neurodegeneration of neurons responsible for cognition: cholinergic neurons. Cholinergic neurons are especially sensitive to decreased membrane fusion activity caused by plasmalogen deficiency because, unlike other neurons, membrane fusion is necessary for both neurotransmitter release and re-uptake. Reduced membrane fusion reduces neurotransmission which reduces cognition.

parkinson's disease

Parkinson’s disease results from neurodegeneration of neurons responsible for fine motor control: dopaminergic neurons. The direct cause of Parkinson’s is unknown, but some environmental neurotoxins selectively target dopaminergic neurons and cause Parkinson’s in animals. Plasmalogen deficiency increases susceptibility to neurotoxins.

multiple sclerosis

Multiple sclerosis results from neurodegeneration of cells that insulate neurons: myelin or oligodendrocytes. Myelin has the highest concentration of plasmalogens in the whole body. When immune cells are activated to clean up a mess (inflammation), part of the myelin can be damaged and extra plasmalogens are needed to repair the cells before they die. If cells cannot be repaired before they die, the debris creates even more inflammation and degeneration. High levels of plasmalogens prevents demyelination by improving remyelination.

plasmalogens to prevent disease

Plasmalogens prevent neurodegeneration in animal models; the majority of the publications are for Parkinson’s disease. In a mouse model of Parkinson’s disease, an oral dose of plasmalogen at 50mg/kg was fully neuroprotective[i]. Several publications demonstrate the neuroprotective and anti-inflammatory properties in mouse and monkey models of Parkinson’s disease[ii],[iii],[iv],[v].

[i] Miville-Godbout E, Bourque M, Morissette M, Al-Sweidi S, Smith T, Mochizuki A, Senanayake V, Jayasinghe D, Wang L, Goodenowe D, Di Paolo T. Plasmalogen Augmentation Reverses Striatal Dopamine Loss in MPTP Mice. PLoS One. 2016 Mar 9;11(3):e0151020. doi: 10.1371/journal.pone.0151020. eCollection 2016. PubMed PMID: 26959819.
https://www.ncbi.nlm.nih.gov/pubmed/26959819

[ii] Nadeau J, Smith T, Lamontagne-Proulx J, Bourque M, Al Sweidi S, Jayasinghe D, Ritchie S, Di Paolo T, Soulet D. Neuroprotection and immunomodulation in the gut of parkinsonian mice with a plasmalogen precursor. Brain Res. 2019 Dec 15;1725:146460. doi: 10.1016/j.brainres.2019.146460. Epub 2019 Sep 13. PubMed PMID: 31525350.
https://www.ncbi.nlm.nih.gov/pubmed/31525350https://www.ncbi.nlm.nih.gov/pubmed/26959819

[iii] Bourque M, Grégoire L, Di Paolo T. The plasmalogen precursor analog PPI-1011 reduces the development of L-DOPA-induced dyskinesias in de novo MPTP monkeys. Behav Brain Res. 2018 Jan 30;337:183-185. doi: 10.1016/j.bbr.2017.09.023. Epub 2017 Sep 14. PubMed PMID: 28917506.
https://www.ncbi.nlm.nih.gov/pubmed/28917506

[iv] Miville-Godbout E, Bourque M, Morissette M, Al-Sweidi S, Smith T, Jayasinghe D, Ritchie S, Di Paolo T. Plasmalogen precursor mitigates striatal dopamine loss in MPTP mice. Brain Res. 2017 Nov 1;1674:70-76. doi: 10.1016/j.brainres.2017.08.020. Epub 2017 Aug 19. PubMed PMID: 28830769.
https://www.ncbi.nlm.nih.gov/pubmed/28830769

[v] Grégoire L, Smith T, Senanayake V, Mochizuki A, Miville-Godbout E, Goodenowe D, Di Paolo T. Plasmalogen precursor analog treatment reduces levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res. 2015 Jun 1;286:328-37. doi: 10.1016/j.bbr.2015.03.012. Epub 2015 Mar 11. PubMed PMID: 25771209.
https://www.ncbi.nlm.nih.gov/pubmed/25771209

it's clear

While we continue to advance research on plasmalogens to answer important questions about the use in disease management, one thing is clear today: plasmalogens are an essential brain nutrient you do not want to be low on. Our scientifically designed, natural plasmalogen supplement ensures there is an adequate amount of plasmalogens in the blood supply for health.

GET THE FREE REPORT

I’ve prepared a comprehensive report entitled “Plasmalogen Deficiency, Dementia, and Death” and I’m making it available for free to you.

Simply click below to download the report.

privacy
Your privacy is important to us.

To better protect your privacy, we provide this notice explaining our online information practices and the choices you can make about the way your information is collected and used. To make this notice easy to find, we make it available on our homepage and at every point where personally identifiable information may be requested.

Collection of Personal Information

When visiting drdayangoodenowe.com, the IP address used to access the site will be logged along with the dates and times of access. This information is purely used to analyze trends, administer the site, track users’ movement and gather broad demographic information for internal use. Most important, any recorded IP addresses are not linked to personally identifiable information.

Links to Third-Party Websites
We have included links on this site for your use and reference. We are not responsible for the privacy policies on these websites. You should be aware that the privacy policies of these sites may differ from our own.
Our Use of Google Analytics
The Dr. Dayan Goodenowe website uses the Google Analytics tool to measure traffic on the site and traffic to the site via our online advertising. This includes using certain Advertising Features, which enable Google Analytics to collect data about users via Google advertising cookies and identifiers, in addition to anonymous data collected through the standard Google Analytics implementation. These Advertising Features, which drdayangoodenowe.com may or may not be currently using, include:
  • Remarketing with Google Analytics. This allows us to display our ads to you as you search online for similar businesses.
  • Google Display Network Impression Reporting, which shows which of our ads users click on.
  • Google Analytics Demographics and Interest Reporting, which provides information about the age and gender of site users, along with the interests they express in their online travel and purchasing activities.
  • Integrated services that require Google Analytics to collect data via advertising cookies and identifiers.
We do not merge personally identifiable information with non-personally identifiable information collected through any Google advertising product or feature unless we have obtained robust notice of, and the user’s prior affirmative (i.e., opt-in) consent to, that merger. These Advertising Features, which drdayangoodenowe.com may or may not be currently using, include:
Opt Out

There are several ways to opt out of interest-based advertising and/or all tracking related to Google Analytics and its advertising features.
You can opt out of interest-based ads by Google through Ads Settings. When you opt out, you’ll still see ads but they may not be related to factors such as your interests, previous visits to other websites, or demographic details. Obtain instructions here.

The Network Advertising Initiative offers a free tool that allows users to opt out from receiving interest-based ads from some or all NAI participating member companies that use cookies on your computer browser to collect data for interest-based advertising. Find information about it here.

Website visitors can totally block Google Analytics with the Google Analytics opt-out browser add-on (click to download). This add-on instructs the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) running on websites to prohibit their information from being used by Google Analytics. Using the Google Analytics opt-out plug-in will not prevent site owners from using other tools to measure site analytics. Learn more about about the opt-out and how to properly install the browser add-on here.

Changes to this Privacy

Statement The contents of this statement may be altered at any time, at our discretion.

If you have any questions regarding the privacy policy of drdayangoodenowe.com then you may contact us at info@drdayangoodenowe.com

terms of use
Welcome to our website. If you continue to browse and use this website, you are agreeing to comply with and be bound by the following terms and conditions of use, which together with our privacy policy govern drdayangoodenowe.com’s relationship with you in relation to this website. If you disagree with any part of these terms and conditions, please do not use our website.

The term ‘drdayangoodenowe.com’ or ‘us’ or ‘we’ refers to the owner of the website whose registered office is:

40880 County Center Drive
Suite R
Temecula, CA 92591, USA

The term ‘you’ refers to the user or viewer of our website.

The use of this website is subject to the following terms of use:

The content of the pages of this website is for your general information and use only. It is subject to change without notice.

Neither we nor any third parties provide any warranty or guarantee as to the accuracy, timeliness, performance, completeness or suitability of the information and materials found or offered on this website for any particular purpose. You acknowledge that such information and materials may contain inaccuracies or errors and we expressly exclude liability for any such inaccuracies or errors to the fullest extent permitted by law.

Your use of any information or materials on this website is entirely at your own risk, for which we shall not be liable. It shall be your own responsibility to ensure that any products, services or information available through this website meet your specific requirements.

This website contains material which is owned by or licensed to us. This material includes, but is not limited to, the design, layout, look, appearance and graphics. Reproduction is prohibited other than in accordance with the copyright notice, which forms part of these terms and conditions.

All trademarks reproduced in this website, which are not the property of, or licensed to the operator, are acknowledged on the website.

Unauthorized use of this website may give rise to a claim for damages and/or be a criminal offence.

From time to time, this website may also include links to other websites. These links are provided for your convenience to provide further information. They do not signify that we endorse the website(s). We have no responsibility for the content of the linked website(s).

Your use of this website and any dispute arising out of such use of the website is subject to the laws of Canada and USA.

We use cookies to make this site as useful as possible. They are small text files we put in your browser to track usage of our site but they don’t tell us who you are. If you want to delete any cookies that are already on your computer, please refer to the instructions for your file management software to locate the file or directory that stores cookies.

This site is not a part of the Facebook website or Facebook Inc. Additionally, this site is not endorsed by Facebook in any way. FACEBOOK is a trademark of FACEBOOK, Inc.
GET THE FREE REPORT

I’ve prepared a comprehensive report entitled “Plasmalogen Deficiency, Dementia, and Death” and I’m making it available for free to you.

Simply click below to download the report.